Distinct roles of the Adenovirus E4 ORF3 protein in viral DNA replication and inhibition of genome concatenation.
نویسندگان
چکیده
Adenovirus early proteins E4 ORF3 and E4 ORF6 have complementary functions during viral infection. Both proteins facilitate efficient viral DNA replication, late protein expression, and prevention of concatenation of viral genomes. Additionally, E4 ORF6 is involved in the shutoff of the host cell protein synthesis through its interaction with the E1B 55K protein. This complex also leads to the degradation of p53. A unique function of E4 ORF3 is the reorganization of nuclear structures known as PML oncogenic domains (PODs). The function of these domains is unclear, but PODs have been implicated in a number of important cellular processes, including transcriptional regulation, apoptosis, transformation, and response to interferon. The goal of this study was to determine the functional significance of the reorganization of PODs by E4 ORF3. Point mutations were made in the E4 ORF3 gene. These mutants were recombined into a virus lacking E4 ORF6 and expressed under the control of the natural virus E4 promoter. The panel of mutant viruses was used to investigate the role of E4 ORF3 during the course of the viral infection program. One of the mutant viruses exhibited aberrant reorganization of PODs and had a severe defect in viral DNA replication, thus leading to a dramatic decrease in virus production. A number of mutants accumulated viral DNA and infectious virus particles to wild-type levels but showed significant viral genome concatenation. These data show that E4 ORF3 is a multifunctional protein and that a specific rearrangement of nuclear PML domains is coupled to efficient viral DNA replication. This function is distinct from the role of E4 ORF3 in the regulation of virus genome concatenation via inhibition of cellular double-strand break repair.
منابع مشابه
Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression
The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interfero...
متن کاملViral and Cellular Genomes Activate Distinct DNA Damage Responses
In response to cellular genome breaks, MRE11/RAD50/NBS1 (MRN) activates a global ATM DNA damage response (DDR) that prevents cellular replication. Here, we show that MRN-ATM also has critical functions in defending the cell against DNA viruses. We reveal temporally distinct responses to adenovirus genomes: a critical MRN-ATM DDR that must be inactivated by E1B-55K/E4-ORF3 viral oncoproteins and...
متن کاملDeletion of the E4 region of the genome produces adenovirus DNA concatemers.
Two mutants containing large deletions in the E4 region of the adenovirus genome H5dl366 (91.9-98.3 map units) and H2dl808 (93.0-97.1 map units) were used to investigate the role of E4 genes in adenovirus DNA synthesis. Infection of KB human epidermoid carcinoma cells with either mutant resulted in production of large concatemers of viral DNA. Only monomer viral genome forms were produced, howe...
متن کاملCellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein.
The adenovirus (Ad) E4 ORF3 protein is both necessary and sufficient to reorganize a nuclear subdomain, the PML nuclear body (PML-NB), from punctate structures into elongated nuclear tracks. PML-NB disruption is recapitulated by a variety of DNA viruses that encode proteins responsible for compromising PML-NB integrity through different mechanisms. PML-NB disruption has been correlated with the...
متن کاملThe adenovirus E4-ORF3 protein functions as a SUMO E3 ligase for TIF-1γ sumoylation and poly-SUMO chain elongation.
The adenovirus (Ad) early region 4 (E4)-ORF3 protein regulates diverse cellular processes to optimize the host environment for the establishment of Ad replication. E4-ORF3 self-assembles into multimers to form a nuclear scaffold in infected cells and creates distinct binding interfaces for different cellular target proteins. Previous studies have shown that the Ad5 E4-ORF3 protein induces sumoy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 77 9 شماره
صفحات -
تاریخ انتشار 2003